电动汽车动力系统集成方案有_电动汽车动力系统集成
1.大众MEB平台ID4电驱动系统技术介绍
2.一文读懂CTC电池底盘:鸡肋还是机遇?
3.什么是新能源汽车及智能汽车
在8月7日杭州上市的吉利旗下几何C电动汽车,扣除补贴后综合售价12.98-18.28万元,NEDC续航里程550公里(400公里)。本文将对几何C引用的”三合一“电驱动技术、和铝材质与复合材料构成的电驱动牵引总成,以及基于热泵空调的动力电池热管理控制策略综合研判。
几何C的外观秉承几何品牌“多维流动生命体”理念,几何C采用一体扰流悬浮车顶、动感御风腰线、战斧式运动轮毂等元素,进一步降低风阻。
1、“3合1”电驱动技术的首次引用:
上图为几何C前至动力舱内诸多分系统状态特写。相对在售国产品牌新能源车都会给动力舱添加一个防尘盖板的做法不同,几何C没有再配置这种阻碍散热且没有任何防尘效果的护板。
红色箭头:集成DCDC\PDU\OBD功能的“3合1”高压充放电总成
**箭头:热泵空调体系中的电动压缩机
白色箭头:热泵空调体系中的两用蒸发器
蓝色箭头:动力电池热管理系统循环管路补液壶
绿色箭头:“3合1”高压充放电系统总成,与“3合1”电驱动系统总成循环管路补液壶
在2016年-2019年期间量产的吉利新能源车型上,装配的是不同技术状态的“2合1”高压重放电系统总成(PDU+OBC),驱动电机控制器与OBC集成在一起的“2合1”控制模组。
发展到几何C,“3合1”高压充放电系统的集成同时,还换装的“3合1”电驱动总成。整套电驱动与高压充放电控制系统的结构,最大程度缩减到2个部分,无论散热管路的长度、阀体的数量,电子水泵的电耗,还是高压线缆的重量与发热量,都得到较大程度的降低,增加整体可靠性。
在几何C上,进化的“3合1”高压充放电系统(红色箭头红色箭头所指)、PTC控制模组(**箭头所指)以及启动用蓄电池都被2组铝材质横梁支撑。
蓝色箭头:固定在铝材质横梁的支架本体也具备一定轻量化功能设定
不过,几何C的亮点并非这套“3合1”电驱动总成外层包裹着降噪衬套,而是悬置总成采用铝材质+复合材料构成。需要确认的是,几何C配置的由复合材料制造的电驱动悬置总成,是行业中独一无二,有助于抑制震动和提升轻量化。
蓝色箭头:“3合1”电驱动总成(包裹着降噪衬套)
**箭头:固定在驱动电机端的铝材质悬置
红色箭头:固定在框型副车架端的复合材料悬置
从另一个角度看,悬置铝材质与复合材料之间用胶套进行“软连接”。在几何C急加速或急减速时,“3合1”电驱动总成将产生一个向前或向后的位移并伴随震颤。复合材料构成的悬置(固定在框型副车架一端)与可以有效抑制驱动电机的位移,并通过胶套将震颤过滤,保证车辆的NVH性能。
在这里有必要提及一下,这种可以归属为工程塑料的复合材料的强度远高于铝材质结构件,且更耐腐蚀。目前,连续出现多宗“断轴”事故的理想ONE,就是在前悬架下摆臂处应用复合材料。复合材料用来“软连接”对支撑要求远低于悬架的电机悬置,体现的是在几何C造车层面的改进持续性的,而不是激进的“断崖”式跃进的策略。
几何C的轻量化并不激进,将3组“3合1”电驱动总成的悬置总成,用钢材质+复合材料“混搭”而成。复合材料构成的悬置固定在框型副车架(也是几何C的一项重要技术提升点),铝材质悬置在“3合1”电驱动总成端,两种材料通过胶套“软连接”。
2、基于热泵空调的整车层面热管理控制策略:
NEDC续航里程550公里的几何C,动力电池装载电量为70度电,与ITCS?3.0电池液冷温控管理系统配合,电池单体温差控制在±2℃以内,使电池温度始终处于最佳温度范围。
几何C动力电池热管理控制系统关联的高温散热的“冷量”,低温预热的“热量”的来源,确是首次集成的热泵空调系统。相对在售电动汽车使用的电动空调系统,热泵空调系统保留了电动压缩机同时,用一组双向蒸发器进行“冷热交换”。虽然物理结构复杂性有所增加,但是在“冷量”和“热量”转换时占用的来自动力电池装载的电量比例却明显降低。
上图为几何C动力电池热管理控制系统的分系统。
白色箭头:为动力电池提供“冷量”的水冷板控制模组
绿色箭头:动力电池热管理系统循环管路补液壶
蓝色箭头:“3合1”电驱动总成与“3合1”充放电系统总成共用的循环管路补液壶
几何C搭载的这套节能型水冷板控制模组分为两个部分,红色箭头所指的是来自热本空调输出“冷量”循环区域,**箭头所指的是为动力电池提供经过接触性冷却后的冷却液的循环区域。
在动力电池热管理控制系统的循环体系中,包括1组为电芯提供高温散热伺服的水冷板控制模组,和1组为电芯提供低温预热伺服的PTC控制模组(设定杂“3合1”高压充放电系统总成下端),以及多组“3通”阀体。
由于几何C配置了双向热本空调系统,将驾驶舱和动力电池所需要的的“热量”和“冷量”的输出源进行了统一,较大程度降低了电耗。作为整车层面热管理控系统一项全新的重要功能,利用“3合1”电驱动总成的热量,引入动力电池热管理系统的低温预热功能,使得低温环境下续航再提升4%。在环境温度摄氏度时,预估可提升续航5%,在环境温度零下7摄氏度时,预估可提升续航10%。
3、持续轻量化的车型平台:
几何C前悬架为麦弗逊式独立架构、后悬架为扭力梁使用半独立架构,中置的动力电池四周由塑料护板完全遮蔽。
红色箭头:前保险杠下端护板
**箭头:前副车架下护板
蓝色箭头:中置动力电池铝材质下壳体
从正向观察,几何C的动力电池、前副车架的最下端处于同一水平线,前保险杠下护板微微上翘。底盘诸多分系统没有凸出异物,平整规则,有利于降低风阻。
几何C换装了1套钢材质全框型副车架+铝材质下A型摆臂,这种悬架方面的改变,或许与自重有所提升的“3合1”电驱动总成有所关联。
几何C配置的铝材质下A型摆臂和铝材质前转向节(**箭头所指)。不过需要注意的是,下A型摆臂的球头销(蓝色箭头)为不可更换设定。如果由于下球销磨损异常,导致转向异响或跑偏,就要整体更换下A型摆臂。另外,自重只有1.65吨的几何C,分配给前转向驱动桥的载荷,是不会出现下球销因为颠簸或轻微碰撞而被“抽出”的“短轴”类故障。
红色箭头:铺设在电机外壳的降噪衬套厚度接近80mm
**箭头:为了便于快速散热,额外设定了1组冷却组件
蓝色箭头:仍然是为了提升散热效率,在靠近电机冷却液管路接入段设定的1组电子水泵
几何C搭载的“3合1”电驱动系统最大输出功率150千瓦、最大输出扭矩310牛米、最高转速15000转/分,使得整车百公里加速达到6.9秒,起步加速仅需2.9s。对于当下主流车型所适配的驱动电机,都因为动力电池性能的攀升,而不再遵循牺牲性能换取续航的适配原则。反而继续挖掘电动汽车“低转速,大扭矩”的特性,在保证续航里程的同时,让车主享受到极速驾驶的“爽”。最高转速提升至15000转/分的“3合”电驱动总成,意味着几何C在高速行驶时产生的电耗有所降低。
4、60千瓦直流快充表现:
选用1台由国家电网提供的60千瓦直流快充桩对几何C充电效率和动力电池热管理策略进行比对。测试当天的14点,地表最高温度只有37.4摄氏度,因此要向体验到几何C在快充模式下,动力电池热管理系统激活高温散热功能有些困难。
在完成与充电状态通信并开始充电后,几何C的中央显示屏(包括驾驶员显示屏)会自动进入相关界面,以动态柱状图形式直观显示动力电池SOC值的变化。
从动力电池SOC值50%开始充电至70%,需求电流稳定在130-150安、电芯温度从24摄氏度提升至29摄氏度。
根据以往评测经验,在室外温度不超过不超过40摄氏度进行直流快充,很难达到激活几何C的动力电池热管理控制系统的高温散热功能阈值(温度)。相对2020年在售的主流车型看,动力电池在快充模式高温散热功能开启的电芯温度点普遍处于36-37摄氏度。如果在大功率直流快充工况下,多组电芯温度达到36-37摄氏度,即便多数电芯温度没有达到,也会开启高温散热功能。
在前文提及的几何C电动汽车搭载的ITCS?3.0电池液冷温控管理系统,具备让电芯单体的温差控制在±2摄氏度以内的能力。这种对数百节电芯温度进行全向掌控,并将温差控制在2摄氏度的热管理系统能力十分优秀。
5、吉利新能源独有的SEM智能能量管理技术:
几何C独有的一个技术特点,就是基于全场景、全工况、全温度系统级动态能效控制算法,做到精准用电能耗控制的SEM智能能量管理技术。SEM智能能量管理技术,可以理解为基于整车控制系统(VCU)与电池控制系统(BMS)联合对驾驶员习惯、充电模式、空调负载等多种参数进行动态标定的控制策略,不仅仅提升续航里程算法的精度,还具备通过长期检测整车状态后通过优化控制提升续航里程的能力。
作为整车电耗输出/回收效率提升的重要环节,几何C配置了1套iBooster电液一体化制动总泵,与带有ESP功能的ABS阀体配合,不仅优化制动曲线,更将制动力转化成电量回收至动力电池存储。在SEM智能能量管理技术架构中,这套制动系统是获取几何C驾驶员习惯、能量输出等关键数据的重要分系统。
在完成2轮直流快充测试和动态测试后,使用检测电脑对几何C的电芯电压、温度以及SOC值调取的数据进行研读和判定。在关于动力电池数据选项中,可以勾选全部以模组为单位,关于电芯的电压和温度值,并且可以获取动力电池冷却液进出口温度值。
笔者注意到,在最后一次进行直流快充测试并行驶70公里后(间歇开启驾驶舱空调制冷功能),电芯温度几乎都处于26摄氏度,只有1#模组电芯温度达到27摄氏度。整个动力总成最低温度处于25摄氏度,这意味着铝合金材质电池壳体的温度会低于电芯温度,而围绕电芯的冷却液温度与绝大多数电芯温度同为26摄氏度。
作为几何系列电动汽车独有的整车性能提升的技术特点,在SEM智能能量管理技术架构下,可以写入厂家为几何C推送的新的VCU及BMS控制策略,通过在市场上使用较长时间反馈的行车数据,与能量输出/回收参数,进行重新适配,已获得更长的续航里程。在SEM智能能量管理技术支持下,几何C在冬季、拥堵等使用场景下,续航最大提升40%,基本做到表显续驶里程与实际续驶里程一致,精准度接近100%。
而几何C电动汽车关键的数据升级,必须返回4S店,由维修技师通过专用设备进行操作。虽然现在很多造车新势力都在鼓吹无限制的OTA模式的升级,可是涉及到电驱动和动力电池方面的升级,一旦在没有技术支持的环境下进行,外衣出现了意外故障,就可能导致车辆在交通主干道不能行驶的窘境。
几何C具备的OTA升级,则在升级同时备份原有数据,一旦出现读写错误还会还原原有配置,且关键系统的升级必须返回4S店或授权服务站进行的便利性与安全性兼顾的做法值得肯定。
6、10项空气动力学设计和智能驾驶技术:
风阻系数只有0.273几何C运用了低能耗、低风阻、低滑阻等技术,设定10项空气动力学设计,包括主动式进气格栅、格栅两侧的扰流气帘等功能性设定。几何C的前保险杠两端,开通了各1组纵向扰流道,降低风阻同时优化了动力舱内冷热空气交换效率。
智能驾驶方面,几何C搭载行业领先的L2+级别智能驾驶辅助系统,能实现0-150公里时速间的跟随前车行驶、车辆起停和随车转弯,识别潜在危险,紧急时刻自动刹停和540度无死角AR底盘透视技术,得以全方位确保行车安全。
这里有要提及几何C配置的HUD抬头显示功能。通过仪表台HUD组件,将行车速度、道路限速等重要信息投射到驾驶员一侧的前风挡玻璃。HUD抬头显示功能的配置,最大程度降低,驾驶员视线偏离-观察显示屏带来的行车危险。
无死角AR底盘透视技术基于车载摄像头拍摄的实景,通过算法将辅助标线与虚拟影像进行合成,实现对车辆前后行驶方向6m内的行人及移动物体实时监测,帮助驾驶员在复杂路况或极端气候提升行车安全系数。
几何C还具备同级领先的APA全自动泊车系统,利用视觉、超声波深度融合技术,做到“自动配对”、一键即停,可实现自动水平泊车、垂直泊车,支持倾斜泊车及自选泊车功能。在方面,中央显示屏支持开放式环境可以安装多种APP,并具备在线音乐播放功能,与其适配的是Bose音响。
笔者有话说:
2020年8月上市的几何C,保持了几何家族化的外观、内饰以及部分配置方面的设定。可是,在几何C的诸多系统设定上,有体现出基于外观、驱动、电池、控制等多个维度的“降低能耗,提升效率”的持续进化策略。
NEDC续航里程550公里、装载电量70度电、采用CTP-无模组技术的动力电池能量密度183.23Wh/kg的几何C整车自重1.65吨,处于2020年主流量产电动汽车的技术状态。
几何C搭载的动力电池系统能量密度为183.23Wh/kg,但是这不是以增加电芯的能量密度提升换来。通过引入CTP-无模组技术,通过取掉模组、冷却管路、高压线缆等附属分系统,减低“额外”的质量及简化结构,已达到间接提升动力电池总成的能量密度的目标。而几何C选择CTP-无模组技术用来提高提高体积能量密度同时,选用523配比(镍钴锰)的三元锂电芯,为的是提高安全性。另外,上汽新能源ER6同样采用CTP-无模组技术的523动力电池,但是系统能量密度只有180Wh/kg,低于几何C。
而在众多在售车型中几何首次适配复合材料的电驱动悬置技术,可以看作是整车轻量化在铝材质基础上的又一次大胆但不激进的尝试,或用于为后续车型配置更多复合材料分系统提供可靠性验证。
“3合1”电驱动技术与“3合1”高压充放电总成的换装,大幅度降低散热用电耗。整车层面的热管理系统在双向热泵空调系统和SEM智能能量管理技术综合控制下,降低冬季制热的耗电量,复杂环境续航里程动态计算变得更加精准。
新能源情报分析网评测组出品
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
大众MEB平台ID4电驱动系统技术介绍
时至今日,新能源汽车、纯电动汽车这些方面的发展已势不可逆,即便还有分歧,更多是体现在具体的技术路线及实现的节奏快慢方面。在推动这些新技术发展的进程中,各国政府政策、各国头部车企的作用更是功不可没。
通用混动系统
众所周知,美国的汽车发展要较中国早上许多,中途又遇到了石油危机、金融危机等一系列大事推波助澜。所以以通用汽车为首的美式混动系统的发展,其实早已经过了远超过我们印象的漫长时光。
早在上世纪60年代,美国便已经将汽车污染治理提上了日程,其中最具系统性和影响力的加州,更是成立了一个强有力的执行机构——加州空气资源委员会(The?California?Air?Resources?Board,CARB),以通过行之有效的措施减少空气污染、保障公共福利及保护生态资源。
在这样的背景下,1969年,通用汽车发布了首款混合动力汽车GM512,它拥有10mph以下纯电动、10mph~13mph混合动力、13mph~40mph汽油机驱动的三款车型。不过虽然GM512是当代以成熟技术开发的最早的混合动力车,外观也十分可爱,却很遗憾地不能合法上路,并不具备更大的使用价值。
此后,美国便迎来了1974年和1980年的两次石油价格波动,1979年发生在美国马里兰州的石油荒,也成为了我们熟识的第二次石油危机。为此,美国政府开始实施了让车企们举步维艰的企业平均燃油经济性标准(CAFE)。好在1980~1990年代,第二次石油危机逐步缓解,这不但降低了CAFE控制汽油消耗的压力,也让绝大多数刚刚"大病初愈"的美国人们对自吸车辆更加倾心。
不过无论石油的供应与价格如何,环保的脚步始终不能停止。1993年9月29日,克林顿政府发布了著名的"未来汽车合办计划(PNGV,Partnership?for?New?Generation?Of?Vehicles),其中最主要的内容,就是提出了新能源发展的技术方向:混合动力、电动车、轻质材料、高性能发动机(直喷)、燃料电池等。通用汽车作为美国本土汽车的领头羊,自然而然地成为了计划中最为重要的一环,展开了覆盖替代燃料、混动、电动、燃料电池等全类型的新能源技术与产品开发,才有了我们今天所看到的通用汽车混动技术。
1996年,通用汽车研发出的当代第一款量产电动汽车EV-1问世,这款精致的2座2门双门轿跑车采用玻璃纤维制成,续航里程最低仅89公里,提供的也大多是租赁服务,这便注定了这台精致的电动汽车不会是大多数人喜爱的类型,不过EV-1依然受到了许多环保团体和电动车爱好者的追捧,实打实地为通用汽车在新能源汽车研发的道路上开了个好头。
转眼来到21世纪初,通用在"双模"完全混合动力系统(AHS2)的研发中投入了大笔资金,并最早在2001年部署的New?Flyer公交车中开始了尝试。2004年,通用汽车在此方面和戴姆勒正式宣布合作,发起了一项著名的"全球混动合作计划"(Global?Hybrid?Cooperation),随后,宝马等企业也纷纷加入其中,开启了有关混动系统的"烧钱式"研发。
这一技术可通过两组行星齿轮融合高低速两种"动力分流"模式,亦可增加一组行星轮,设置更多固定档位,以此获得更佳的平顺性,兼顾引擎与电机的负载,以此进一步提高燃油经济性,因此这套系统也具有更好的灵活性与拓展性。这也让通用汽车在2006年正式申请了公司历史上第三万个技术专利,成为了通用汽车Power?Split(动力分流式)混动技术区别于其他任何一家企业的关键因素,更成功于2007年获得了Automobile?Magazine年度最佳汽车科技大奖。
但是此时的混动系统造价依旧十分昂贵,这便让通用正式将目光瞄准了第三代凯雷德产品,随后推出的凯雷德双模混合动力SUV车型即为这一技术的衍生物。在此时的混动凯雷德上,搭载了2部83KW驱动电机置于EVT系统中,3个行星齿轮组进行同步协调,4组离合器进行电机和行星齿轮组结合控制,成本之高可想而知。好在在所有凯雷德的订单中,有20%是混动车型贡献的,成绩可以算是相当不错,而且这些混动凯雷德车型在国内也曾有销售,也许某天我们就会在大街上遇到这样一辆混动"怪兽"。
让我们将目光转回2006年,那时,快速发展的锂离子电池技术激起了通用汽车当时的全球产品开发副主席罗伯特·卢兹(Robert?Lutz)对全电动车制造的信心。通用也在当年推出了后来被称为Voltec驱动系统的E-Flex系统理念,其中的"E"代表电力驱动和"Flex"代表不同的电力来源,可以从汽油、乙醇、生物柴油或氢气中获得电能,可以根据不同地区客户的不同需求,定制推进系统,以满足特殊的要求和特定市场的基础设施,这些燃料最终转化成电能驱动汽车,简单来说就是当今的增程式电动车理念。
与此同时,通用汽车针对"双模系统"、"行星排双驱动电机系统"进行了更为深入的研发,并就效率更高、动力性更好的双星排双电机、三行星排双电机分别申请了相关专利,也成就了动力分流最优化的通用汽车新能源电驱动系统平台,能够满足HEV、PHEV、EREV等多种形式的新能源车型。
2007年,搭载了通用E-Flex技术理念电驱系统的雪佛兰Volt概念车正式在底特律车展展出。由于这款车是第一款美国大型厂商从真正意义上的"三电"出发,专门针对电池、电机、电控等强电部件进行全新的电气构架设计的车型,所以一出世便被业界喻为"真正改变了汽车的DNA,是驱动汽车行业进入电气时代的先驱",同时也受到了广大环保爱好者的追捧。其搭载的Voltec电驱系统,更因此被视为美国新能源汽车技术的骄傲。
好景不长,我们熟知的2008年金融危机悄然接近,如果没有美国政府的迅速干预,通用汽车和克莱斯勒肯定会毫无悬念地直接破产。但在政府的刺激计划之下,各行各业都在强势复苏,通用汽车更是在极短时间内重新恢复了全面竞争力,带动了美国汽车产业的全面复苏。政府还大力推进了各项汽车环保政策的实施,其中最重要的政策就是推广清洁能源汽车,对购买新能源车型、低油耗车型的车主们实行税收减免和退税。
时间来到2015年1月,第二代雪佛兰Volt车型终于在底特律北美车展首发。新车采用1.5升四缸发动机+两台驱动电机,最新的第二代?Voltec电驱技术也首次应用于该车型中。这套全新的驱动系统对硬件系统进行了深度集成,不但重量比老款轻了45千克,体积更是减小了近三分之一,结合电池与电控系统的升级,使整车效率显著提升了12%,纯电动模式下可续航80公里,与电动机配合后续航里程增至676km,96?km/h加速时间也仅需8.4秒,不可谓不优秀。
2016年2月,通用汽车宣布将动力总成部门(GM?Powertrain)延用了24年的名称更改为通用全球驱动系统(GM?Global?Propulsion?System),通用汽车电气化驱动技术也随之完成了量变到质变的飞跃。
基于通用第二代?Voltec电驱系统发展出的全新的混合动力驱动系统,可以覆盖HEV/PHEV/EREV等多样化车型,从高科技3缸汽油发动机到燃料电池,从V8柴油发动机到电池电动系统,以及6速、7速、8速、9速甚至10速连续可变变速箱,实现电驱动系统在新能源汽车环保节油、动力性能、驾乘舒适性这三方面综合性能的新高度。实质上这也正是对通用最早提出的双模混动和E-Flex理念的一脉相承与全新诠释。
我们所看到的国产的凯迪拉克CT6?PEHV插电式混合动力车型,别克增程式电动车Velite?5就是上汽将这些先进的技术与零件漂洋过海运至国内呈现给我们的。虽然CT6?PLUG-IN车型如今已经停产,但例如发动机、变速箱等等在Voltec电驱系统中发展而来的车辆关键性零件,仍将在我们的用车生活中散发光热。
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
一文读懂CTC电池底盘:鸡肋还是机遇?
作者:吴庆国?文章首发于《电动新视界》微信公众号
一、说明?
大众致力于电动交通系统的发展。全新一代的ID.?family电动汽车将于2020年上市。将会有不同级别的零排放车辆,它们的行驶里程与今天的汽油车相当。ID.?CROZZ,?ID.?VIZZION和?ID.?BUZZ已经公开。第一款将于2020年投放市场的ID.车型将是ID.一款价格适中、四门、全连接的紧凑型汽车(图1)。大众集团计划到2022年在全球推出27款MEB汽车。其中包括奥迪、西雅特、斯柯达、大众和大众商用车品牌的电动车型。
图1?The?ID.?家族:?(左起)?the?ID.,?ID.?CROZZ,?ID.?VIZZION?and?ID.?BUZZ
该ID.将标志着世界上第一个基于模块化电气化工具包(MEB)的模型的首次亮相,这是一个专门为全电动汽车开发的技术平台(图2)。电动驱动系统的组件和电池包是精确地系统互连。高压电池位于车轴之间的中心。它是可扩展的,适应不同的电池类型,并配备了集成的液体冷却。因此,比较容易集成到ID.模型的各种功率输出中。根据电池大小和ID.型号,范围约为可达到330公里至550公里以上。一个充电功率高达11kW交流充电器集成在车辆。采用CCS(联合充电系统)装置可实现高达125kW的直流充电。基本上可以在平台上安装两个电动驱动系统,通过MEB的可伸缩部件实现驱动一个轴或两个轴。
图2?MEB车型平台
ID.的零排放驱动系统主要由与后轴相结合的电机组成,包括功率逆变器和单速变速器、安装在车底的高压电池和位于车前端的辅助部件,以节约空间。紧凑的驱动系统由电机、电源逆变器和单速变速器组成。它的行驶里程和现在的汽油车差不多,价格和柴油车一样,ID.也有潜力促进环保电动交通的发展,并开始一个电力驱动系统新时代。
二、高压电池系统介绍?
确定电压范围的关键因素是高压电池。它集成到前后车轴之间的车身底部底,这节省了空间,并提供了较为宽敞的车内空间,同时确保一个最佳的前后50%:50%的重量分布,并且具备低重心的整车优势。高压电池是电动车最重要的成本因素。在其开发和设计过程中,除了要考虑满足长里程的电池容量和功率密度、优异的驾驶性能和快速充电能力等技术标准外,还要考虑成本和使用寿命等经济方面的因素。
对于MEB,大众汽车开发了高性能锂离子高压电池,在一定操作习惯和工作温度条件下,保证了高实用性和长使用寿命。它提供了一个在宽的温度波段和充电范围的状态可重复的高功率输出的电子驱动器。在短充电时间,高水平的连续电流容量,充电功率高达125kW。可伸缩的电池容量确保了可提供不同的ID.车型家族,从330公里到超过550公里(根据WLTP)范围的续驶里程。
高压电池由并联和串接的模块组成,这些模块又由单独的电池单元组成。由于采用模块化设计,高压电池中的电池单元数量可以变化。这使得不同的能量含量和缩放的高压电池能适应不同的汽车概念和客户的要求。强大的热管理具有直接冷却系统能确保即使在高负荷或低温情况下高压电池依然能运行在其25至35℃的最佳温度范围。电流、电压和温度通过单元模块控制器和主控制单元进行监控。
三、充电技术?
图3?MEB车辆的充电选项
除了里程,充电问题对电动车的日常实用性也至关重要。客户对充电技术有明确的要求:充电时间尽可能短,充电选择充足。大众公司假设大多数ID.驾车者每周只给他们的电动车充电一次,这意味着50%的充电活动可能在家里进行。因此,车辆基于MEB将作为标准配备一个type?2充电连接,其中可通过交流连接充电,可通过一个标准家用插座充电2.3?kW或在11kW的壁柜。晚上墙盒的交流充电为电池充电提供了充分的电力。由于电池只能用直流电充电,所以车上集成了一个11kW的充电器,将插座、壁柜或交流充电站的交流电转换成直流电,为高压电池充电。
可选的CCS充电端口可以显著缩短充电时间。它结合了一个2型插头和两个额外的电源接点进行直流充电(图3)。通过CCS充电端口,高压电池可以使用高达125kW的电源进行充电。30分钟内可以充满其80%的电量。从长远来看,MEB也为感应充电做好了准备,这既不需要电缆也不需要插头。车辆简单地停在一个所谓的充电板上,通过这个充电板充电。
四、MEB的电驱动系统?
图4?MEB的后驱系统
为MEB研发了两个新的电驱动系统。主驱是后轴上的永磁同步电机(PSM,图4)。它结合了一个功率逆变器(PI)和一个平行轴的减速器。输出功率为150?kw,扭矩为310?Nm,最大转速为16000?rpm。PSM是一个具有高功率密度和高效率的系统组件,在宽调速范围内可持续提供输出。
根据车辆规划,MEB前驱可以提供动力。前驱是一个带有感应异步电机的电驱系统,可实现整车四驱。它的功率输出为75?kW,扭矩为151?Nm,最大转速为14000?rpm。异步机(ASM)以其短时间超载运行和低阻损失的能力而著称。因此,它非常适合做辅驱。
下面将重点介绍MEB永磁同步电机(PSM)电驱的组成、技术特征和性能数据。
4.1?PSM/ASM工作原理
永磁同步电机的工作原理
定子三相铜绕组中的电流产生旋转磁通(旋转磁场)。转子内的励磁磁场由永磁体无损耗地产生,并穿透定子。这会产生了一个切向力,其中转子和定子的旋转场以相同的转速(同步)旋转(图5,左)。
异步机(ASM)工作原理
定子三相铜绕组中的电流产生旋转磁通(旋转磁场),通过短路绕组穿透转子。异步电机中的转子,其转速略低于定子的旋转磁场(异步)。这在短路绕组中产生磁场变化,从而产生电流。由此产生的磁场在转子中产生一个切向力,作为转矩作用在转子轴上(图5,右)。
图5?PSM(左)和ASM(右)的基本结构
4.2?逆变器(PI)
电机的三相电流由直接安装在电机上的液冷功率逆变器(PI)提供。图6显示了电源逆变器的爆炸视图。在电源逆变器内部,将最新一代的三个IGBT电源模块连接起来,形成了一个经典的B6电源逆变器。在模块载体内部,电源模块被冷却结构框起来,这样驱动板就可以直接插到电源模块的触脚上。驱动板在和控制板之间加装有屏蔽罩。
图6?功率逆变器(PI)结构
PI内部其他重要组件包括:直流输入的滤波组件,直流母线电容器,三相母线铜排和液冷冷却单元。
PI的模块化设计适用于大批量工业化生产。从通过模块载体的电源模块到电源和控制器模块,创建了一个模块化系统,该系统提供了一个基础,在此基础上,下一代电子驱动项目可以实现较小的修改就可以完成。此外,电力电子产品的全自动生产确保了即使在大规模生产中结构和功能的质量稳定。为调节电机电流值而导入和处理传感器数据是一个高度动态的过程。其结果是最佳的功率利用,特别是在动态工作点。一些车辆功能,如减振和滑动控制功能,被直接集成到电力电子系统中。因此,可以实现没有延迟的总线通信。这种设计的优点是在开发过程中有更多直接的适应选项,以满足特定车辆驾驶行为的需求。
在MEB平台中,DC/DC转换器没有集成到PI中,而是作为一个单独的液冷组件设计的。DC/DC可以灵活安装到车辆其他地方,并有两个功率等级可供选择,它们分别为1.8?kW和3.0?kW。
4.3?PSM后桥驱动
MEB后驱电机为三相永磁同步电机(PSM),转子四对极,最大转速为16000?rpm。它由电源逆变器、四部分壳体(电机壳体、电机后端盖、减速器前壳、减速器后壳,见图4)、定子、转子、带温度传感器的旋转变压器、单挡减速器等主要模块组成。电驱总成是在卡塞尔的大众工厂生产的。转子和定子由大众萨尔茨基特(Salzgitter)厂提供。
定子包含用于三相连接的母线绕组。转子内的永磁体为钕合金组成的永磁体,嵌入到叠片中。定子和转子安装在一个铸造外壳内,定子液体冷却。两个深沟球轴承安装在转子轴两端。
在电机轴后端安装有旋变转子,低压接线端子包括绕组温度的传感器和旋变信号,最好通过电机盖板封闭。旋变和温度低压信号最后连接到控制器端。减速器减速增扭,减速器的前壳体与电机前端盖集成化设计,降低重量和尺寸(见图4)。
4.3.1定子结构
图7?PSM定子
定子主要由叠片和三相发卡线绕组组成(图7)。叠片组由单个的、焊接的、分层的、外径为220mm的独立镀层金属板叠片组成。叠片具有较高的导磁率,厚度为0.27?mm,并在两面涂有一层电绝缘层。定子分为四段,每段在组装期间偏移90度。这减少了金属晶粒方向对旋转磁场均匀性的影响。
绕组插入到定子槽,焊接三相端部(图8),并自动连接三相铜排。该定子结构的末端绕组包含一个用于温度传感器的接触装置。定子还浸渍树脂,以增加绝缘,改善热传导和加强绕组。定子经过自动测试程序,自动压装到电机外壳。
图8?定子线圈组件
4.3.2?转子结构
图9?转子的爆炸图
转子由转子轴、嵌入v形永磁体的叠片、压板和旋变转子组成。转子分为四段。转子端面用压板压紧,并通过四个张紧螺钉连接在一起,这些螺钉穿过叠片(图9)。全自动化压紧叠片,自动压装转子轴完成装配。
转子永磁体采用"V+1"斜级布置。它们被一层膨胀的磁性涂层保护着。目的是提升电机NVH性能。叠片是由相同材料的金属片冲切而成。
转子轴设计为空心轴,由两部分焊接而成。它通过纵向内花键连接到变速器的输入轴上。整个电机轴和减速器输入轴三轴承支撑,轴承为低摩擦深沟球轴承。降低机械损失。
转子轴与叠片安装时,需对叠片总成加热。这也导致永磁体热激活和磁涂层膨胀,需固定好永磁铁。
4.3.3?带温度传感器的旋转变压器
图10?PSM?b侧轴承屏蔽上的组件
为了给定子绕组通入正确的三相交流电,需要检测转子的正确位置。此任务由旋变完成。它由转子轴上的转子和固定在电机后轴承轴承屏蔽上的定子组成(图10)。
在定子绕组上的一个发夹中设计一个专用固定点,其中安装有用于测定绕组温度的温度传感器。
从解析器和温度传感器发出的信号通过信号插头传输到PI,然后进行评估。
电源逆变器是通过螺栓连到电机外壳。用于定子相位绕组的三条母线是PI的组成部分,在定子固定在电机外壳后被固定在定子的接触桥上。
A端和B端盖板内部都包含特殊的碰撞元件,在发生追尾碰撞时,该元件可以将驱动装置与车身框架隔离,从而防止高压电池短路。
4.3.4?冷却和加热电子驱动器
电驱动系统是液体冷却的。冷却液流入电子驱动器首先通过电源逆变器运行,因为半导体规定了允许的最大冷却液温度。流过PI后,冷却剂通过密封管塞元件进入电机外壳的冷却水套。热量主要是由定子铜绕组的电阻损耗产生的,通过绕组绝缘层和叠片到达机壳中的冷却水套。冷却介质通过经过优化的周向冷却通道进入定子,并在冷却水道的末端通过冷却连接软管进入车辆的外部冷却回路(图11)。
图11?冷却液流经PI和定子
4.3.5?电子驱动器技术参数
*重量为PI、电机、减速器三者的总重紧凑的MEB电子驱动器为大众的ID.汽车家族提供了一个卓越的驱动性能。平行轴MEB后驱动桥,永磁同步电机集成PI和单速减速器,提供了150?kW的峰值功率和310?Nm的最大扭矩。电机的最大转速为16000?rpm(图12)。
同轴MEB前轴驱动桥作为四轮驱动辅驱,是一种集成PI和单挡减速器的异步电机。它提供了一个峰值功率75?kW和最大扭矩151?Nm。这台电机的最大转速为14000?rpm。
图12?PSM效率图
电子驱动器的设计是基于对不同驾驶周期的电机特性map图中能量转化的详细评估。在设计磁路时,我们特别注意城市驾驶循环的工作点,以确保电子驱动器在这些情况下高效运行。在大量的现实工况中,效率远高于90%(见图12、图13)。
图13?PSM满载图
4.3.6?MEB后驱动桥与e-Golf?驱动桥的比较
*重量为PI、电机、减速器三者的总重将新型MEB后桥驱动与目前e-Golf中的电驱动桥技术数据进行比较[3,4,5],说明了其开发进展。峰值功率可提高50%至150?kW,扭矩可提高7%至310?Nm。尽管增加了功率和扭矩,MEB后桥驱动器的重量减少了18%,至90kg。这使得MEB后轴驱动的功率重量比为1667?W/kg,与e-Golf的电驱动桥相比显著提高了82%。
4.4?单速变速箱
图14?MEB后驱动桥单速变速箱
单挡减速器为二级齿轮减速机构,用于降低电机转速,提升扭矩输出(图14)。
MEB专门对减速器齿轮进行了NVH声学优化。电机轴和减速器输入轴采用3轴承支撑,减少了摩擦。润滑油终身免维护。进行了针对性的润滑设计,采用干式油底壳概念降低搅油损失,提升效率。此外,将带预紧力锥轴承改成了浮动柱轴承。
减速器设计了不同速比以满足不同动力需求。ID首次使用时的总速比为11.5:1,最高时速为160?km/h。同时,MEB将取消传动系驻车锁止机构,在坡路工况,将采用轮端EPB实现驻车功能。
五.总结?
大众MEB的动力系统是一个模块化构建工具包的一部分,其组件可形成各种不同的电子动力系统配置,以配置各种规格的电动汽车。
MEB的平行轴后轴驱动系统包括一台高效的永磁同步电机、一个摩擦优化的单速变速器和一个紧固在电机上的高度紧凑的功率逆变器。与高压锂离子电池相结合,大众ID型车的电子驱动最大扭矩为310?Nm,最大功率为150?kW。对于四轮驱动的应用,有一个额外的同轴电驱动桥可用于前轴。它是由一个创新的异步电机,搭配低摩擦单挡减速器,同时集成了控制器组成的。
电气化动力系统的MEB代表了大众汽车新车模块化方法的系统延续。由于系统开发的高容量,开发和组件成本可以大大降低。这是降低汽车成本,从而增加电动汽车的市场渗透的必要先决条件。
它的续驶里程和现在的汽油车差不多,价格和柴油车一样,ID.也有潜力促进环保电动交通的发展,并开始一个电力驱动系统新时代。参考文献
[1]?Volkswagen?Newsroom,?E-mobility,?17.09.2018?MEB?architecture"Roadmap?E"ück,?et.al.?Volkswagen?Electrifies?the?New?Golf?38th?Vienna?Motor?Symposium,?Vienna,?2017?
[4]?P.?Lück,?G.?Kruse,?J.?Tousen,?et.al.?The?electric?powertrain?matrix?from?VolkswagenMTZ?-?Motortechnische?Zeitschrift,?Issue?2/2014,?2014?
[5]?P.?Lück,?J.?Tousen,?et.?al.?Elektrische?Antriebe?für?die?Hybrid-?und?Elektrofahrzeuge?von?Volkswagen?9th?MTZ?Conference?“The?Powertrain?of?Tomorrow”,?Wolfsburg,?2014
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
什么是新能源汽车及智能汽车
CTC是什么技术?
太平洋汽车前沿科技原创
随着电动汽车的快速发展,电池技术也在不断突破,比如 比亚迪 刀片电池、固态电池、换电技术等等。在不久的将来,另一项非常创新的技术出现在视野中,而这项技术就是CTC电池底盘一体化技术。这个技术到底行不行?是鸡肋的存在还是新机会的出现?我们一起聊聊吧。
什么是CTC电池底盘一体化技术?
简单总结,就是把电池直接集成到车辆底盘的过程。它进一步加深了电池系统与电动汽车动力系统和底盘的集成,减少了零件数量,节省了空间,提高了结构效率,并大大减轻了车辆重量,增加了电池寿命。被认为是决定下一阶段新能源汽车竞争成败的关键核心技术。
简单来说,CTC电池底盘集成技术就是将电池集成到底盘中,使其成为车辆底盘的一部分。
为了实现这一技术,不仅仅是将电池单元集成到底部托盘中,而是主要通过以下阶段来集成电池系统:
第一阶段,CTM(Cell to Module):最初的新能源产业,希望把电池单体标准化,然后用规模化来降低成本。然而,各种型号的不同需求使得电池制造商很难统一电池单元尺寸,然后退而求其次的是将电池系统标准化为模块。在过去的几年中,电池系统集成的焦点是不断提高标准化电池模块的尺寸,例如典型的590模块。
第二阶段,CTP (Cell to Pack): CTP是将电芯直接集成到电池组中,有效提高了电池组的空间利用率和能量密度。目前,当代安培科技有限公司、比亚迪、蜂巢能源都有自己的CTP方案。众所周知的比亚迪刀片电池采用CTP技术。
第三阶段,CTC(Cell to Chassis):进化到CTC阶段,不仅需要电池重排,还需要电驱动的电控系统,使电池、电机、电控、车载充电器、底盘高度集成,通过智能功率域控制器优化功率分配,降低能耗。这就对整个制造链条要求极高,要求主机厂和电池供应商具备多项跨领域能力:大部分车企必须具备电芯设计和三电系统高度集成的能力,电池企业需要设计电机和底盘。目前,国内的零跑和海外的特斯拉已经率先公布了CTC方案,比亚迪、当代安培科技有限公司等。都在加速布局。
CTC技术就是直接跳过所有中间环节,直接将电芯与底盘结合,将电机、电控等核心部件集成在一起。
CTC技术有哪些优势?
首先适应性强,与整车匹配度提高,可以快速灵活批量生产。其次,底盘高度集成化和模块化,可以跨平台适应未来所有级别和类型的车辆。同时,也正是因为高度的集成化和模块化,更好地简化了零部件数量和生产步骤,在降低成本的同时增加了电池容量和续航里程。
高度集成是CTC技术的最大优势,可以更好地优化零部件和生产步骤,降低生产成本,提高电池容量。
CTC技术没有劣势吗?
当然有。首先,换电是不可能的。目前国家有换电模式的政策,各大厂商陆续推出支持换电的品牌和型号。然而,CTC技术将电池与底盘集成在一起,因此使用CTC方案的车辆将无法适应电力交换和能量补充。
其次,从维护的角度进行分析。由于采用CTC方案的车辆的电池组和底盘是整体设计的,当车辆底盘区域发生碰撞变形时,维修方案会涉及更多的整体结构件,成本也会增加。
CTC不仅是一个优势,也是一个无法解决根本问题
零车在4月份发布了自己的CTC方案,这次发布的CTC方案并不是业界最激进的“电池-底盘”,而是“电池-模块-底盘”的一套模式。与前者相比,零跑方案的模块更多,但相同的是也省略了电池组。总体而言,它更像是一个试探性的过渡方案。但从结果来看,零跑CTC方案有效提升了车辆的综合性能。
零运行方案并没有保存模块,更像是从CTP到CTC的过渡方案。但即便如此,还是值得我们称赞的。敢于迈出第一步,是一种极大的勇气和魄力。
该方案创新应用了CTC双骨架环梁结构,将电池骨架结构和底盘车身结构合二为一,既是底盘结构又是电池结构,整体结构效率更高。其次是气密性,电池密封是通过车身的设计来实现的。CTC技术借用了底盘的基本结构,利用车体的纵梁和横梁形成完整的密封结构。和传统汽车相比,这绝对是一个很大的创新。
同时,根据零跑官方数据,这种CTC方案减少了20%的零部件数量,降低了15%的结构件成本,整车刚性得到提升。25%,实现高度集成化和模块化。还拥有极强的扩展性,可兼容智能化、集成化热管理系统。未来可兼容800V高压平台,支持400kW超级快充等。从最终的结果来看,这套方案也达到了一定的预期效果,零件减少、成本降低、续航增加、强度提升,综合来看是比较成功的。
这套CTC方案将率先应用在C01车型上,如果不出意外,零跑C01(参数|询价)也将是国内第一款搭载CTC技术的量产车型。
从车型的具体表现来看,CTC技术可以为C01带来更大电池容量的空间,相比传统方案电池布置空间增加14.5%,实现更宽敞的驾乘空间,消除电池包与车身之间的安装间隙,车身垂直空间增加10mm。
其次,CTC技术增加了电池空间利用率,提升10%续航的同时提高电池保温性能。同时,采用了AI BMS大数据电池管理系统,可以实时监测,这样基本上杜绝了因为电池或者电芯失效引发的安全问题。特斯拉不光只有CTC技术
特斯拉:CTC方案和一体化压铸技术
特斯拉在2020年就发布了全新的整包封装技术CTC,特斯拉的方案是直接将电芯或是模组安装在底盘上,电池组将作为车身结构的一部分,连接前后两个车身大型铸件,取消原有座舱底板,取代以电池上盖,座椅直接安装在电池上盖上。特斯拉的方案更为直接一些,取消了模组这一环节,直接将电芯放置在底盘内,并将座椅直接放置在上边。
根据申请的专利以及公开信息进行汇总的话,特斯拉CTC技术有这样几个特点:
1、电池包上盖与电芯粘接在一起,与座椅等车辆结构件直接连接在一起;
2、电芯之间填充树脂材料,起到热保护和结构性支撑的作用;
3、把以前的铝丝连接改为Busbar连接,利用母排引脚将电连接和电池管理系统的采集板直接连接在一起;
4、电池包一侧配置了8个泄压阀,加强了热失控管理;
特斯拉的这套方案有减少支撑件、减轻整车质量、提升整体电池容量等优势,为车辆降低10%车重,增加14%续航里程,减少370个零件,单位成本下降7%,单位投资下降8%,大幅提升汽车生产制造的效率。并且,特斯拉最新的第三代圆柱电池4680电芯和上一代电芯都可以使用这套CTC方案。这套方案通同样也达到了减少零件、降低车重、增加续航的目的,并且制造成本进一步降低,整体来看是一套非常成功的设计方案。
除了CTC方案之外,特斯拉的一体化压铸技术也值得在这里介绍一下,这项技术是将前车身+底盘电池包+后车身组合成车身。特斯拉的一体压铸技术将大量减少车身零部件、降低车身复杂度并实现减重。根据特斯拉公布的材料,采用一体压铸技术的 Model Y (参数|询价)可以使下车体总成重量降低30%,制造成本下降40%。同时,压铸成型后的一体式车身无需再进行二次热处理,大幅提高制造效率。一体化压铸其实并不是什么新技术,但通过与CTC技术的结合,可以将制造成本以及车身重量进一步压低。但实际使用中,如果出现底盘磕碰的现象,那维修费用将会非常非常高。
比亚迪:海豹将采用CTB技术
比亚迪在2021年时推出了全新纯电动e3.0平台,将驱动电机、电机控制器、减速器、高压配电箱、逆变器、车载充电器、整车控制器、电池管理系统等8大模块整合,实现“八合一”动力系统集成。电池依然使用刀片电池,并将整车的驱动、制动、转向等功能深度融合。比亚迪全新e3.0平台实现了“八合一”动力系统集成,搭配比亚迪引以为傲的刀片电池,将带来更好的驾乘体验。
5月20日预售的全新车型海豹将会基于e3.0平台所打造,并且还将会使用CTB电池车身一体化技术。简单来说,海豹就是在“八合一”的基础上更进一步地将电池做到了车身中,刀片电池把安全和强度融入作为整车的一部分。比亚迪的CTB技术从结构上来看依然有独立的电池包,只是在安装的时候将电池包与车身进行硬链接,并使用封胶对其缝隙进行封装,从而达到一体化的效果。
目前比亚迪的这套方案所曝光的资料还不多,从已经曝光的来看,比亚迪的CTB电池车身一体化技术是将车内的地板面板与电池包上壳体合二为一,也就是说比亚迪在设计制造电池包的时候,把电池系统作为一个整体与车身集成,这样的效果就是电池本身的密封及防水要求可以满足,电池与成员舱的密封也相对简单,整体的风险可控。
宁德时代:加速CTC研发布局
2020年8月,宁德时代宣布研发电池底盘一体化新技术。目前,宁德时代正在加快CTC的研发攻关,并宣布计划于2025年左右推出高度集成化的CTC技术,有望在2028年前后升级至第五代智能化CTC。宁德时代目前的CTC技术目前还属于攻坚阶段,并没有发布最终的产品,作为电池行业的龙头企业,宁德时代自然不会放过CTC技术这个风口浪尖。
据悉,宁德时代的集成化CTC技术不仅会重新布置电池,还会纳入包括电机、电控、DC/DC、OBC等动力部件。将电芯与车身、底盘、电驱动、热管理及各类高低压控制模块等集成一体,使行驶里程突破1000km。CTC技术未来发展如何
◆CTC技术对产业发展的影响
对于整车企业来说,CTC技术直接涉及到底盘,这是车企最为关心的核心部件。因此,拥有更多底盘研发经验的车企,在未来将会拥有更多的主导权,而不具备开发优势的车企最终在底盘等硬件环节也将丧失主导权。
而对于电池企业来说,CTC技术的应用就要求电池制造商从更早的阶段就介入车型设计中,这就要求电池企业具备更强的研发设计能力,以便于配合部分主机厂进行深度开发。预计未来将会出现更多的电池厂与主机厂的深度合作。CTC技术的应用就意味着车企与电池厂商的结合将更加紧密,但这之间的主导权争夺也自然会出现,车企与电池厂商都希望按照各自的标准来执行,而这很可能将关乎到未来整个行业的话语权。
此外,电池企业缺乏对车辆底盘的开发经验和技术积累,因此在CTC的研发过程中很可能会失去对整个项目的主导权,打破目前电池厂商的强势地位。
◆CTC技术与换电技术谁更符合当下发展?
其实,这个问题还不好说。
在2021年时,国务院发布的《新能源汽车产业发展规划(2021-2035年)》中,就提出了大力推动充换电网络建设。因此目前以 北汽新能源 、蔚来、宁德时代、吉利等为首的各大品牌,都相继推出各自的换电技术。
而同样是在《新能源汽车产业发展规划(2021-2035年)》中,也提出了要研发新一代模块化高性能整车平台,攻关纯电动汽车底盘一体化设计、多能源动力系统集成技术。
不同于换电,CTC技术则是向着另一个方向发展,相比较于换电技术,CTC技术则在降低成本、提高续航以及轻量化方面有着较大的优势,这也就使得各大厂商也愿意在CTC技术上进行布局。而CTC技术相较于换电则没有那么灵活,但成本低、增加续航以及车辆轻量化则是换电所不具备的优势。
总的来说,目前两种技术还都属于起步阶段,并且各自存在其独特的优势,这两种技术都属于未来电动车发展的趋势之一,只是最终结果会倾向于谁,目前下定论还为时尚早。
全文总结:CTC技术目前确实处在风口浪尖上,并且也是未来电池技术发展的重要方向之一。以目前的情形来看,海外品牌中只有特斯拉将CTC技术进行了落地,而国内也只有零跑以及比亚迪近期会将这一技术应用到量产车中。并且,这一技术如果大规模应用,还将对主机厂、电池企业以及整个供应链体系提出一套全新的标准。所以,目前想要将这项技术大规模应用,可能还需要很长一段时间。
@2019
当前汽车行业有两个关键词越来越火热,这两个关键词便是新能源汽车和智能汽车。虽然我们越来越多的提及新能源汽车和智能汽车,但是到底什么是新能源汽车及智能汽车呢?新能源汽车和智能汽车有什么区别呢?新能源汽车属于人工智能吗?
新能源汽车包括纯电动汽车、增程电动汽车、混合动力汽车、燃料电池电动汽车、氢发动机汽车等新能源汽车。
纯电动汽车是一种以单一电池为储能动力源的汽车。它利用电池作为储能动力源,通过电池向电机提供电能,驱动电机运行,从而促进汽车运行。
燃料电池电动汽车是一种由氢和空气中的氧气驱动的汽车。燃料电池电动汽车本质上是一种纯电动汽车,其主要区别在于动力电池的工作原理不同。
一般来说,燃料电池通过电化学反应将化学能转化为电能。电化学反应所需的还原剂一般为氢,氧化剂为氧。因此,最早开发的燃料电池电动汽车大多直接使用氢燃料。氢的储存可以是液化氢、压缩氢或金属氢化物。氢发动机汽车是以氢发动机为动力源的汽车。
一般发动机使用柴油或汽油,氢发动机使用气体氢。氢发动机汽车是一种真正实现零排放的交通工具,排放纯水,具有无污染、零排放、储量丰富等优点。其他新能源汽车包括使用超级电容器、飞轮和其他高效储能器的汽车。目前,在我国,新能源汽车主要是指纯电动汽车、扩展电动汽车、插电式混合动力汽车和燃料电池电动汽车,传统的混合动力汽车分为节能汽车。
智能汽车是一个集环境感知、规划决策、多级辅助驾驶等功能于一体的综合性系统。它集中在计算机、现代传感器、信息集成、通信、人工智能和自动控制等技术上,是一个典型的高科技综合体。
目前,对智能车辆的研究主要致力于提高汽车的安全性、舒适性,并提供良好的人车交互界面。
近年来,智能车辆已成为世界车辆工程领域研究的热点和汽车工业增长的新动力。许多发达国家将其纳入其关键的智能交通系统。
新能源汽车虽然不一定是人工智能,但目前汽车行业的发展趋势下,新能源汽车和人工智能紧密捆绑,因此在未来,既是新能源汽车,同时又是智能汽车的车型势必会受到大家更多的认可和欢迎!那么都有什么品牌同时是新能源汽车和智能汽车呢?
国外品牌如特斯拉,国内品牌如蔚小理、哪吒、零跑、集度等均属于新能源汽车,但同时也都是属于智能化程度较高的品牌。当然,不同的品牌智能化程度不一,这一点还需要大家了解。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。