1.车主实测特斯拉完全自动驾驶:遇见修路就傻眼,左摇右摆频繁画龙

车主实测特斯拉完全自动驾驶:遇见修路就傻眼,左摇右摆频繁画龙

特斯拉fsd是什么级别的自动驾驶_特斯拉fsd属于L几

车东西(公众号:chedongxi)

作者?|?James

编辑?|?晓寒

特斯拉的FSD“完全自动驾驶”系统,离规模量产可能比你想的还要远。

10月份,特斯拉向少数种子用户推送了FSD?Beta功能(后续又推送了多个更新),让特斯拉Model?3可以在城市的各种场景实现L2级自动驾驶,包括车道内跟车、自动变道、自动等红灯、自动调头,甚至是经过环岛等等。

特斯拉FSD?Beta车机显示

这一功能的推送,让特斯拉的车型在高速和城市两个场景都实现了L2级自动驾驶,用户只需要盯着路况监控车辆表现即可,相当于是实现了L4自动驾驶的功能,再次展示了特斯拉在自动驾驶方面的领先实力。

马斯克今年在上海世界人工智能大会上宣布,特斯拉将在今年完成L5级自动驾驶基本功能的研发工作,说的就是FSD。

虽然目前美国用户上传的视频显示FSD?Beta有很多惊人之处,但也有车主发现了一些致命问题——比如在遇到道路维修时,FSD?Beta的表现就非常差,甚至可以说完全无法使用。

美国特斯拉车主Raj日前就专门进行了一次系统的测试,打开FSD?Beta功能驶过了4个道路施工区域,向我们表明了特斯拉FSD?Beta遇到施工这一场景究竟有多不靠谱。

一、驶过八个施工区域?六个都无法正常通过

近日,特斯拉车主Raj在测试FSD?Beta的过程中发现,FSD的最强对手竟然是封闭路段。

他在公共道路上行驶时发现,特斯拉FSD?Beta在大多数路段都能很好地自动驾驶,在十字路口转弯、等红灯、调头都能轻松完成。

在12分钟的视频中,Raj一共测试了8个施工区域,其中有6个都无法正常通过,某些区域还需要人为干预。

在行驶一次后,Raj调头让车辆再次行驶,表现依然不太理想。有时候不敢往前走,有时候又想撞向封闭道路的锥桶区域,甚至还会“画蛇前进”。

车主Raj道路实测特斯拉FSD?Beta

1、遇到施工频繁蛇形前进

在Raj发布的视频中,他一直开启特斯拉FSD?Beta前进,但车辆遇到了多个区域临时道路封闭。在数百米以外的位置,道路修复单位已经摆上了警示牌,提示前方左侧道路变窄。但由于特斯拉无法识别停车标志以外的路标,因此仅能识别在道路变窄标志下方的锥桶。

继续向前行驶,特斯拉能够沿着锥桶划定的路线前进,防止撞上锥桶。但是在通过路口时,由于没有摆放锥桶,此时特斯拉“有点懵”,在左右两条车道之间纠结,并作出了非常危险的“画蛇前进”动作。

特斯拉在左侧道路变窄时“画蛇前进”

不过还好,当时车速比较慢,换道过程比较平缓,最终特斯拉通过第一个路口,进入左侧道路封闭路段。

2、碰见自行车道不知所措

在这一路段,车辆仅能在最右侧非机动车道行驶,这时特斯拉的表现越来越不稳定。

非机动车道道路狭窄且车道线将车道一分为二,特斯拉以这样的道路似乎不太适应,一直打着左转向灯,想向左侧变道。同时,在“踏上”非机动车道的那一刻,特斯拉就开始紧张,方向盘不稳定地左右转动。

在经过两个锥桶之间的空隙时,特斯拉多次向左猛打方向,驾驶员快速反应接管车辆,继续保持右侧非机动车道行驶。

同时,也逐渐跟不上前方大奔的脚步,速度放缓。在即将停车时,车辆发出提示音,请求驾驶员接管。

进入非机动车道后,车辆开始画蛇同时减速

Raj重新开动车辆后,这一路段不再允许打开自动驾驶,仅能驾驶员手动驾驶前进。

3、道路中央施工直接撞了上去

在另一临时封闭路段,工作人员将中间车道封闭,看似车辆可以选择左右两条路行驶,但道路最右侧为非机动车道,因此车辆只能靠左侧车道行驶。同时,临时路牌也提醒驾驶员,车辆需要靠左行驶,避免驶上非机动车道。

不过,FSD?Beta在检测到前方道路将要封闭后,错误地选择向右行驶进入非机动车道。

临近封闭道路时,特斯拉在谨慎地右转的同时,反而将路径规划选择向左。

特斯拉错误选择右侧非机动车道行驶,但仍需要驾驶员接管

在撞上锥桶之前,驾驶员选择手动接管,被迫让车辆驶上非机动车道。

4、无视施工阻拦硬要转弯

之后,Raj又将车辆开上另一路段,在规划路线中,车辆将会遇到右转道路封闭的场景。

特斯拉在临近右转路口时,打开转向灯并向右侧变道。到达路口时,特斯拉微微右转,但因为识别到障碍物,所以放弃右转继续前行。

右转道路封闭时强闯

在前行几米后,特斯拉再次尝试右转,试图强行闯入右侧封闭道路,驾驶员手动接管,最终没有造成事故。

5、仅有两次顺利通过

临时封闭道路场景给特斯拉FSD带来了不小的麻烦,但是在某些情况下,特斯拉也能完美处理临时道路变窄的场景。

在整个测试过程中,特斯拉FSD?Beta仅有两次妥善处理了封闭道路设施。

仅有少数情况能顺利通过修缮路段

Raj分析称,这是因为特斯拉提前向右侧变道,并非真正识别左侧变窄路标。

6、同一场景再尝试?依然无法通行

这几个复杂路段测试完成后,Raj让车辆调头,如果将此前的场景再测试一次,特斯拉的表现会有提升吗?结果是,第二次的表现似乎更糟糕。

同一路段再次行驶表现更加糟糕

在左侧道路封闭时,特斯拉不断试图向左侧变道,驾驶员仍旧需要多次紧急接管,才避免事故发生。

在表现最糟糕的情况下,在20秒的时间内驾驶员一共干预了4次。几次紧急接管后,Raj都将车辆的行驶报告向特斯拉提交,特斯拉工程师将会通过自动驾驶电脑的“影子模式”不断提升车辆的自动驾驶能力。

二、城市道路L2自动驾驶基本实现?环岛都能轻松拿下

特斯拉虽然在临时封闭路段表现不佳,但是FSD?Beta在其他路段的表现可谓非常出色。在多家量产自动驾驶车企推出与特斯拉类似的自动辅助导航驾驶、自动辅助变道功能之后,特斯拉在今年10月面向测试用户更新了FSD?Beta,可以基本实现城市道路的L2级自动驾驶。

目前,特斯拉车主在购买FSD选装套件之后,车辆都能在高速公路和城市快速路上实现自动辅助导航驾驶、自动辅助变道等L2级自动驾驶功能。在停车场,驾驶员可以使用自动泊车让车辆泊车入位,取车时可以智能召唤让车辆自动开到驾驶员面前。在美国,车辆还能识别道路上的信号灯,并根据信号灯颜色判定停车或前进。

不过,特斯拉完全自动驾驶FSD缺失了一个重要场景,那就是无法在城市道路实现自动驾驶。FSD?Beta的发布,补充了这一短板。

根据FSD?Beta的更新说明,车辆可以在非高速公路路段实现自动变道、根据导航路线行驶,既能够在车流和其他物体之间穿梭,也能在路口左转、右转。这也就意味着特斯拉将在不久的将来面向所有FSD选配用户更新城市道路L2级自动驾驶功能。

特斯拉FSD?Beta更新说明

同时,特斯拉也提示,驾驶员需要实时关注道路交通状况,并握住方向盘,随时准备接管车辆,在有盲区的拐角、十字路口以及窄路路段要尤其注意车辆行驶状态。

实际测试显示,特斯拉FSD?Beta的表现确实非常出色。

另一名车主Brandon让特斯拉在黑夜行驶,行驶至一段双向两车道的道路上,车道线并不清晰,车机显示中央车道线显示时隐时现。即使没有车道线,车辆一直保持靠右,并跟随导航行驶。

FSD?Beta转弯测试

到达路口停车标志前300英尺(约合91.4米)时提示前方有停车标志,即将停车。

在路口左转时,对向车道驶来车辆,系统根据对向车辆可能造成的威胁标记成白色、**、紫色、红色。在停车标志前停下等待(美国交通法规规定)后启动车辆,左转通过十字路口。

这是量产L2级自动驾驶的一项重大进步。

在此前,所有量产版L2级自动驾驶系统都只能随公路“调整方向”,并非真正的“转弯”,而特斯拉实现了让车辆在十字路口转弯。

据外媒The?Verge报道,特斯拉在完成自动驾驶的神经网络和控制算法基本架构的重写之后,才得以拓展更多的自动驾驶功能。也就是特斯拉已经完成了从二维图像的识别升级到四维环境的识别,自动驾驶性能得以显著提升。

夜晚环境中,路灯、路边建筑物灯光、前车刹车灯、对向车道头灯都会让车辆自动驾驶变得更加困难。此前车东西在夜晚测试使用特斯拉自动辅助导航驾驶(NOA)时,夜晚的性能确实不如白天。

在Brandon的测试中,即便在光线干扰非常强的情况下,特斯拉也能“看清”前方交通信号灯变化。

夜晚光线复杂也能快速识别信号灯

接下来,Brandon将车开到了有环岛的路段,根据导航路线,车辆需要在环岛第二出口驶出。

视频中可见特斯拉首先在环岛外停车(美国交通法规规定),确认安全后驶入环岛并按照导航路线顺利驶出。

特斯拉自动驾驶通过环岛

这是量产L2级自动驾驶的另一项重大进步。

在此前,所有量产L2级自动驾驶系统都无法在环岛自动驾驶。别说自动驾驶系统,即便是驾驶员手动驾驶,有许多驾驶员也难以“驾驭”环岛这样的特殊路段,不敢驶入、驶出环岛、错过环岛出口等情况时有发生。

从演示视频中可以看到,特斯拉已经有能力解决人类驾驶中的这一痛点。

在FSD?Beta发布的第二天,马斯克就自信地宣布,FSD选配马上涨价。目前美国车主选配FSD的价格是1万美元(约合6.54万元人民币),这也是特斯拉年内第二次宣布FSD选配套件涨价。中国车主选配价格暂时没有变动,今年只经历了一次涨价,目前价格为6.4万人民币(对应8000美元)。

不过,目前选配了FSD的中国车主还不能让车辆识别红绿灯并作出正确反应,功能相比于美国用户更少。随着用户获得的功能增加,未来中国用户选配FSD的价格或许还将增加。

结语:软件定义汽车?同样能定义自动驾驶

在量产自动驾驶领域,特斯拉或许是最胆大的那一个。仅凭视觉传感器、非高精地图、非高精定位,就能实现在大多数场景中自动驾驶。相比其他厂商,激光雷达、高精度地图、高精定位、车路协同等技术堆上车身,受硬件成本限制,量产却成为最大的难题。

软件定义汽车如今已经成为行业共识,想要提升自动驾驶水平,必须要提升软件的水平,真正让自动驾驶车辆在路上跑起来,这样才能对自动驾驶系统不断迭代,让可靠性99.9%之后的9越来越多。

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。